Friday, March 15, 2019

Integrating the product of the power of secant by the power of tangent

Method

We consider the following cases:

1) n even let u = tanx and use the following identity: sec²x = tan²x + 1
2) m odd  u = secx  tan²x = sec²x -1
2) m even n odd reduce power of secx: tan²x = sec²x -1


Example I

Calculate ∫tan²xsec⁴xdx

sec⁴x is the near derivative of tan²x and n is even we write u = tanx.

Taking the derivative of both sides we have du = sec²xdx. dx = du/sec²x.

Let's substitute tanx and dx

 ∫tan²xsec⁴xdx = ∫u²sec⁴x.du/sec²x

                     =  ∫u²sec²xdu

We use the identity sec²x = tan²x + 1 in order to have the integral as a function of u. Then by substituting tanx by u: sec²x = u² + 1. Therefore:

 ∫tan²xsec⁴xdx =  ∫u²( u² + 1)du
                     
                       =  ∫(u⁴ + u²)du
                   
                      = u⁵/5 + u³ + C
                   
                      = 1/5tan⁵x + 1/3tan³x + C

Example II

Solve ∫tan³xsec³xdx.

We start by looking at the condition for n. Here n is odd. There isn't a condition for n only. We look at the condition for m. Here m is odd then we write u = secx and tan²x = sec²x-1

Let's write u = secx. Then du = tanxsecxdx. Therefore dx = du/tanxsecx.

Let's substitute secx and dx.


 ∫tan³xsec³xdx = ∫tan³xu³.du/tanxu
                   
                      =  ∫tan²xu²du
Let's express tanx in function of secx so that we can have the integral as a function of u

∫tan³xsec³xdx =  ∫(sec²x - 1)u²du
                   
                     =  ∫(u² - 1)u²du

                    =   ∫u⁴du -  ∫u²du
       
                   = 1/5u⁵ - 1/3u³ + C
               
                 =  1/5sec⁵x -  1/3sec³x + C

Practice

Solve:

1) ∫tan²xsec³x
2) ∫tan³xsec⁴x

Interested in learning more about integrals visit Center for Integral Development
Intrested in private tutoring visit New Direction Education Services for contact information.





No comments: